量子成像

编辑
本词条由“匿名用户” 建档。

量子成像,是一种利用光场的二阶或高阶关联获得物体信息的成像方法。量子成像属于非定域成像,其概念起源于20世纪50年代的HB-T实验。继纠缠光量子成像实验之后,陆续有研究者提出了经典光量子成像、无透镜量子成像、计算量子成像、差分量子成像等技术。量子成像技术在光刻、激光雷达、生物组织造影、水下成像等领域都有应用。 2000年,博托(英语:A.N.Boto)小组提出了N光子吸收光刻技术,这种技术使用纠缠...

什么是量子成像

编辑

量子成像,是一种利用光场的二阶或高阶关联获得物体信息的成像方法。量子成像属于非定域成像,其概念起源于20世纪50年代的HB-T实验。继纠缠光量子成像实验之后,陆续有研究者提出了经典光量子成像、无透镜量子成像、计算量子成像、差分量子成像等技术。量子成像技术在光刻激光雷达生物组织造影、水下成像等领域都有应用。

量子成像

相关领域与应用

编辑

光刻技术

2000年,博托(英语:A. N. Boto)小组提出了N光子吸收光刻技术,这种技术使用纠缠光子流取代经典光的非相干性光子流,降低光刻技术中的最小可分辨特征尺寸。高度纠缠的光子可以使得光刻技术的最小可分辨特征尺寸突破瑞利衍射极限规定的最小值(N是一个泵浦光子分裂成为的一组纠缠光子的数量,这些光子最后都会被光刻胶吸收)。其原理可以简述为:在经典光中,N个光子到达某一特定空间区域的概率是单个光子到达该范围的N次方,但纠缠光中只要确定其中一个光子到达的区域,其他N-1个光子会到达的区域是确定的,如果光学系统对的足够准,则N个纠缠光子到达某一特定区域的概率就只需要计算一次,这使得N光子光刻不需要光焦度达到不切实际的程度,仅使用与经典器件相同的功率级别,即可使光刻最小可分辨特征尺寸降低N倍。

激光雷达技术

传统激光雷达分为两种类型:扫描成像激光雷达和非扫描成像激光雷达。扫描成像激光雷达通过用脉冲激光逐点扫描目标区域来获得目标的真实空间图像,这种雷达难以对高速动物体进行成像;非扫描成像激光雷达用脉冲闪光激光源和高分辨率成像系统进行成像,一次曝光即可获得目标的真实空间图像,但目标反射的光强是由CCD相机许多小像素接收到的,因此检测灵敏度较低,其检测距离受到成像系统光路和整个成像平面的信噪比的影响。相较之下,量子成像激光雷达具有遥感距离长、成像速度快和成像分辨率高等优点。

2009年,以色列科学家亚伦·希尔伯格(英语:Yaron Silberberg)等进行了计算量子成像的验证实验,提出了用于赝热量子成像的图像重建高级算法,并提出计算量子成像可以用于激光雷达。2011年,美国麻省理工学院学者提出计算量子成像用于遥感成像的方案,并分析了这种方案的性能

内容由匿名用户提供,本内容不代表vibaike.com立场,内容投诉举报请联系vibaike.com客服。如若转载,请注明出处:https://vibaike.com/112769/

(4)
词条目录
  1. 什么是量子成像
  2. 相关领域与应用
  3. 光刻技术
  4. 激光雷达技术

轻触这里

关闭目录

目录