凸优化

编辑
本词条由“匿名用户” 建档。

(了解如何以及何时删除此模板消息) 凸优化是数学优化的一个子领域,研究最小化凸集上的凸函数(或等效地最大化凸集上的凹函数)的问题。许多类型的凸优化问题都采用多项式时间算法,而数学优化通常是NP难的。 凸优化在自动控制系统、估计与信号处理、通信与网络、电子电路设计、数据分析与建模、金融、统计学(最优实验设计)、结构优化等学科中有着广泛的应用,其中近似概念已被证明是有效的。随着计算和优化算法的最新进展...

目录

凸优化

编辑

(了解如何以及何时删除此模板消息)

凸优化是数学优化的一个子领域,研究最小化凸集上的凸函数(或等效地最大化凸集上的凹函数)的问题。 许多类型的凸优化问题都采用多项式时间算法,而数学优化通常是 NP 难的。

凸优化在自动控制系统、估计与信号处理通信网络电子电路设计数据分析与建模、金融、统计学(最优实验设计)、结构优化等学科中有着广泛的应用,其中 近似概念已被证明是有效的。 随着计算和优化算法的最新进展,凸规划几乎与线性规划一样简单。

定义

编辑

凸优化问题是目标函数是凸函数,可行集是凸集的优化问题。

如果存在这样的点,则称为最优点或最优解; 所有最优点的集合称为最优集。 如果 f {displaystyle f} 在 C {displaystyle C} 以下是无界的,或者未达到下确界,则称优化问题是无界的。 否则,如果 C {displaystyle C} 是空集,那么这个问题就是不可行的。

标准形式

一个凸优化问题是标准形式的

凸优化

函数 f {displaystyle f} 是问题的目标函数,函数 g i {displaystyle g_{i}} 和 h i {displaystyle h_{i}} 是约束函数。

优化问题的可行集 C {displaystyle C} 由所有满足约束的点 x ∈ D {displaystyle mathbf {x} in {mathcal {D}}} 组成。 这个集合是凸的,因为 D {displaystyle {mathcal {D}}} 是凸的,凸函数的子层集是凸的,仿射集是凸的,凸集的交集是凸的。

内容由匿名用户提供,本内容不代表vibaike.com立场,内容投诉举报请联系vibaike.com客服。如若转载,请注明出处:https://vibaike.com/198143/

(13)
词条目录
  1. 凸优化
  2. 定义
  3. 标准形式

轻触这里

关闭目录

目录