血小板(bloodplatelet),简称:PLT。是哺乳动物血液中的有形成分之一,是从骨髓成熟的巨核细胞胞质裂解脱落下来的具有生物活性的小块胞质。体积小,无细胞核,呈双面微凸的圆盘状,(100~300)×10^9个/L,直径为2-3微米。血小板在长期内被看作是血液中的无功能的细胞碎片。血小板具有特定的形态结构和生化组成,在正常血液中有较恒定的数量(如人的血小板数为每立方毫米10~30万),在止血...
血小板(blood platelet),简称:PLT。是哺乳动物血液中的有形成分之一,是从骨髓成熟的巨核细胞胞质裂解脱落下来的具有生物活性的小块胞质。体积小,无细胞核,呈双面微凸的圆盘状,(100~300)×10^9个/L,直径为2-3微米。血小板在长期内被看作是血液中的无功能的细胞碎片。血小板具有特定的形态结构和生化组成,在正常血液中有较恒定的数量(如人的血小板数为每立方毫米10~30万),在止血、伤口愈合、炎症反应、血栓形成及器官移植排斥等生理和病理过程中有重要作用。血小板只存在于哺乳动物血液中。没有细胞核结构,即没有染色体。
血小板
直到1882年意大利医师J.B.比佐泽罗发现它们在血管损伤后的止血过程中起着重要作用,才首次提出血小板的命名。 低等脊椎动物圆口纲有纺锤细胞起凝血作用,鱼纲开始有特定的血栓细胞。两栖、爬行和鸟纲动物血液中都有血栓细胞,血栓细胞是有细胞核的梭形成椭圆形细胞,功能与血小板相似。无脊椎动物没有专一的血栓细胞,如软体动物的变形细胞兼有防御和创伤治愈作用。甲壳动物只有一种血细胞,兼有凝血作用。 血小板为圆盘形,直径1~4微米到7~8微米不等,且个体差异很大(5~12立方微米)。血小板因能运动和变形,故用一般方法观察时表现为多形态。血小板结构复杂,简言之,由外向内为3层结构,即由外膜、单元膜及膜下微丝结构组成的xxx为第1层;第2层为凝胶层,电镜下见到与周围平行的微丝及微管构造;第3层为微器官层,有线粒体、致密小体、残核等结构。 血小板正常值:(100到300)×10^9个/L.
相关词条
由骨髓造血组织中的巨核细胞产生。多功能造血干细胞在造血组织中经过定向分化形成原始的巨核细胞,又进一步成为成熟的巨核细胞。成熟的巨核细胞膜表面形成许多凹陷,伸入胞质之中,相邻的凹陷细胞膜在凹陷深部相互融合,使巨核细胞部分胞质与母体分开。最后这些被细胞膜包围的与巨核细胞胞质分离开的成分脱离巨核细胞,经过骨髓造血组织中的血窦进入血液循环成为血小板。新生成的血小板先通过脾脏,约有1/3在此贮存。贮存的血小板可与进入循环血中的血小板自由交换,以维持血中的正常量。每个巨核细胞产生血小板的数量每立方毫米大约200~8000,一般认为血小板的生成受血液中的血小板生成素调节,但其详细过程和机制尚不清楚。血小板寿命约7~14天,每天约更新总量的1/10,衰老的血小板大多在脾脏中被清除。
血小板描述:细胞碎片,体积很小,形状不规则,常成群分布在红细胞之间。循环血中正常状态的血小板呈两面微凹、椭圆形或圆盘形,叫做循环型血小板。人的血小板平均直径约2~4微米,厚0.5~1.5微米,平均体积7立方微米。血小板虽无细胞核,但有细胞器,此外,内部还有散在分布的颗粒成分。血小板一旦与创伤面或玻璃等非血管内膜表面接触,即迅速扩展,颗粒向中央集中,并伸出多个伪足,变成树突型血小板,大部分颗粒随即释放,血小板之间融合,成为粘性变形血小板。树突型血小板如及时消除其刺激因素还能变成循环型血小板,粘性变形的血小板则为不可逆转的改变。血小板有复杂的结构和组成。血小板膜是附着或镶嵌有蛋白质双分子层的脂膜,膜中含有多种糖蛋白,已知糖蛋白Ⅰb与粘附作用有关,糖蛋白Ⅱb/Ⅲa与聚集作用有关,糖蛋白Ⅴ是凝血酶的受体。血小板膜外附有由血浆蛋白、凝血因子和与纤维蛋白溶解系统有关分子组成的血浆层(血小板的外覆被)。血小板胞浆中有两种管道系统:与表面相连的开放管道系统和致密管系统。前者是血小板膜内陷在胞浆中形成的错综分布的管道系统,管道的膜与血小板膜相连续,管道膜内表面也有与血小板膜一样的外覆层,通过此管道系统,血浆可以进入血小板内部,从而扩大了血小板与血浆的接触面积,由于存在这套与表面相连的发达的管道系统,使血小板形成与海绵相似的结构;后者即致密管系统的管道细而短,与外界不通,相当内质网。血小板周缘的血小板膜下有十几层平行作环状排列的微管,近血小板膜处还有较密的微丝(肌动蛋白)和肌球蛋白,它们与血小板的形态的维持及变形运动有关。血小板内散在着两种颗粒:α颗粒和致密颗粒。α颗粒内容物是中等电子密度,有的颗粒中央还有电子密度较高的芯。α颗粒中含纤维蛋白原、血小板第4因子、组织蛋白酶A、组织蛋白酶D、酸性水解酶等。致密颗粒内容物电子密度极高,含有5-羟色胺、ADP、ATP、钙离子、肾上腺素、抗血纤维蛋白酶、焦磷酸等。另外,在血小板中还存在有线粒体、糖原颗粒等。
血小板的主要功能是凝血和止血,修补破损的血管。血小板的表面糖衣能吸附血浆蛋白和凝血因子Ⅲ,血小板颗粒内含有与凝血有关的物质。当血管受损害或破 裂时,血小板受刺激,由静止相变为机能相,迅即发生变形,表面粘度增大,凝聚成团;同时在表面第Ⅲ 因子的作用下,使血浆内的凝血酶原变为凝血酶,后者又催化纤维蛋白原变成丝状的纤维蛋白,与血细胞 共同形成凝血块止血。血小板颗粒物质的释放,则进一步促进止血和凝血。血小板还有保护血管内皮、参 与内皮修复、防止动脉粥样硬化的作用。血液中的血小板数低于10万/μ1(100×10^9/L)为血小板减少,低于5万/μL(50×10^9/L)则有出血危险。
血小板是骨髓中巨核细胞质脱落下来的小块,故无细胞核,表面有完整的细胞膜,血小板体积小,直经为2~4微米,呈双凸圆盘状,易受机械、化学刺激,此时便伸出突起,呈不规则形,电镜下血小板的膜表面有糖衣,能吸附血浆蛋白和凝血因子。血小板在出血凝血过程中起重要作用。
在血液中,血小板是最小的细胞。血小板在电子显微镜下像橄榄形盘状.也有梭形或不规则形。血小板长为l.5~4微米,宽为0.5~2微米。正常人血液中血小板计数为(100~300)×10”/升,l/3的血小板平时贮存在脾脏中。 血小板的主要功能是凝血和止血作用,修补破损的血管。血小板的寿命平均为7~14天,当人体受伤流血时,血小板就会成群结队地在数秒钟内奋不顾身扑上去封闭伤口以止血。血小板和血液中的其他凝血物质——钙离子和凝血酶等,在破损的血管壁上聚集成团,形成血栓,堵塞破损的伤口和血管,血小板还能释放肾上腺素,引起血管收缩,促进止血。
血小板在较长一段时间里被认为是血液中的无功能的细胞碎片,直到1882年意大利医师比佐泽罗发现它们在血管损伤后的止血过程中起着重要作用,才首次提出血小板的命名。人们发现血小板是从骨髓中巨核细胞脱落下来的小块胞质,每个巨核细胞可产生:300~4 000个血小板。
各种侵害骨髓而形成造血功能低下的疾病,都会影响血小板的质和量。当血小板数降低时,很容易发生出血不止的现象。血小板一流出来,它就破裂了,放出它所含有的凝血物质——凝集素。凝集素一遇上血液里的凝集原,就会结合成凝血素。凝血素再和血浆里的纤维蛋白原结合,组成纤维蛋白,纤维蛋白很快地凝固,凝成一条条细长的纤维。这些纤维再纵横交错,形成一个堵住伤口的“纤维墙”,过几天就逐渐形成了痂。
血栓形成和溶解当血管破损时,血小板受到损伤部位激活因素刺激出现血小板的聚集,成为血小板凝块,起到初级止血作用,接着血小板又经过复杂的变化产生凝血酶,使邻近血浆中的纤维蛋白原变为纤维蛋白,互相交织的纤维蛋白使血小板凝块与血细胞缠结成血凝块,即血栓(见凝血因子)。同时血小板的突起伸入纤维蛋白网内,随着血小板微丝(肌动蛋白)和肌球蛋白的收缩,使血凝块收缩,血栓变得更坚实,能更有效地起止血作用,这是二级的止血作用。伴随着血栓的形成,血小板释放血栓烷A2;致密颗粒和α颗粒通过与表面相连管道系统释放ADP、5-羟色胺、血小板第4因子、β血栓球蛋白、凝血酶敏感蛋白、细胞生长因子、血液凝固因子Ⅴ、Ⅶ、Ⅻ和血管通透因子等多种活性物质,这些活性物质通过激活周围血小板,促进血管收缩,促纤维蛋白形成等多种方式加强止血效果。物质则可加强损伤部位的炎症和免疫反应。血液凝固后,可以看见血块周围出现一些黄色透明的液体,这种液体不仅颜色与血浆不同,而且其中没有纤维蛋白原,这称为血清。
当血管损伤部位血栓形成,血液停止流失以后需要防止血栓的无限增大,避免由此而产生的血管阻塞。此时,由血小板所产生的5-羟色胺等对血管内皮细胞起作用,使其释放纤维蛋白溶酶原激活因子,促使纤维蛋白溶酶形成,进而使血栓中的纤维蛋白溶解。血小板本身也有纤维蛋白溶酶原激活因子与纤维蛋白溶酶原,产生纤维蛋白溶酶参与血栓中纤维蛋白的再溶解。
血液受损伤流血时,发生止血和凝血效应的机制有多种,但大都与血小板的作用有关系, 归纳起来有如下几个方面:
1、收缩血管,有助于暂时止血
血小板的止血作用,是通过其释放的血管收缩物质、血小板粘聚成团堵塞损伤的血管和促进凝血实现的。血小板能释放5-羟色胺,儿茶酚按等血管收缩素,使受损伤血管不同程度地紧闭,同时管内血流量减少,防止血液流失。
2、形成止血栓,堵塞血管破裂口
血小板容易粘附和沉积在受损血管所暴露出来的胶原纤维上, 聚集成团,形成止血栓;血栓直接堵塞在血管裂口处,除了起栓堵作用外,还可维护血管壁的完整性。
3、血小板的凝血作用
释放促使血液凝固的物质,在血管破裂处加速形成凝血块。
血小板的凝血作用:血小板3因子提供磷脂表面吸附大部分凝血因子,增加凝血反应速度。
受到损伤的血管或组织处于产生一些因子,启动内源性和外源性血凝系统,在血小板所释放的不同因子的综合作用下,数分钟内完成了一系列酶促生化连锁反应,最终导致血浆内可溶性的纤维蛋白原转变成不溶性的纤维蛋白。纤维蛋白原分子量约34万,电镜下观察数条肽链形成螺旋盘曲的四级结构,整体上看呈团状。纤维蛋白则是细长丝状,并相互交织成网,因而把血细胞网罗起来,形成冻胶状的血凝块。
4、释放抗纤溶因子, 抑制纤溶系统的活动
血浆中的纤维蛋白在纤溶系统的作用下,容易降解。由于血小板含有抗纤溶因子、抑制了纤溶系统的活动, 使形成的血凝块不至于崩溃。
·5、营养和支持毛细血管内皮
·6、促进血液循环
血小板是血液中体积最小的血细胞,正常人血液中计数为100×10^9/升一300×10^9/升,占血液体积的0.3%,妇女在月经期可减少50%~75%,幼儿含量稍低。血小板约2/3在末梢血循环中,l/3在脾脏中,并在两者之间相互交换。
内容由匿名用户提供,本内容不代表vibaike.com立场,内容投诉举报请联系vibaike.com客服。如若转载,请注明出处:https://vibaike.com/37300/